钙钛矿有机电池光电转换效率纪录刷新

新加坡国立大学科研团队研制出一款新型钙钛矿有机串联太阳能电池,经权威认证,其1平方厘米有效面积内的光电转换效率达到26.4%,创下同类设备的世界纪录。研究成果发表于最新一期《自然》杂志。

资讯61

研究团队表示,新研制出的串联电池兼具轻薄、柔韧等特性,未来可直接集成于无人机、智能织物、可穿戴设备等人工智能装备,为其提供清洁能源。

这项突破的核心在于,团队创新研发的窄带隙有机吸收器。该装置犹如一个精密的“光子捕手”,能高效捕获近红外光区的光子,成功解决了长期制约薄膜串联太阳能电池发展的技术瓶颈。

钙钛矿与有机半导体材料的带隙可灵活调控,使串联电池具备突破理论效率极限的潜力。然而,近红外光区吸收效率低下一直是制约研发进程的“绊脚石”。

面对这一挑战,研究团队另辟蹊径,设计出具有不对称结构的有机受体。这种创新结构不仅将吸光范围拓展至深近红外区域,还能维持足够的电荷分离驱动力,并形成规则有序的分子排列。借助超快光谱技术和器件物理分析,研究团队证实该设计实现了高效电荷收集,同时将能量损耗降至最低。

在具体实施中,研究团队先将这种高性能有机子电池与顶层的钙钛矿电池叠加,再通过透明导电氧化物互连层将二者有机结合。测试数据令人振奋:0.05平方厘米的微型样品转换效率达27.5%1平方厘米标准器件效率为26.7%,其中26.4%的效率值已获独立认证。这一成果不仅刷新了钙钛矿有机电池的纪录,其性能甚至超越同尺寸的钙钛矿CIGS电池和单结钙钛矿电池。

本文采编:CY
下一篇

低温下精准控制量子比特的芯片问世,助推量子计算迈向实用化

量子计算机要真正实现大规模实用化,关键在于如何稳定、精准地控制海量量子比特。澳大利亚悉尼大学与新南威尔士大学的研究团队在这一方向取得重要突破。他们开发出一种低温下实现精准控制的芯片,有望将芯片上的量子比特数量从目前的几十个扩展到百万量级。相关成果近日发表在《自然》期刊上。

如您有个性化需求,请点击 定制服务

版权提示:华经产业研究院倡导尊重与保护知识产权,对有明确来源的内容均注明出处。若发现本站文章存在内容、版权或其它问题,请联系kf@huaon.com,我们将及时与您沟通处理。

人工客服
联系方式

咨询热线

400-700-0142
010-80392465
企业微信
微信扫码咨询客服
返回顶部
在线咨询
研究报告
商业计划书
项目可研
定制服务
返回顶部
Baidu
map